Гипотетические астрообъекты (для КосмоФантастики): странные звёзды и Черно-Белые Дыры (Транссферы)

Автор: Алекс А. Алмистов

Что такое гипотетические астрономические объекты? Звёзды...

Первоисточники:  Константин Галла ,  https://shkolazhizni.ru/world/articles/69840/, "10 Звёзд, которые поразят ваше воображение " -  https://bugaga.ru/interesting/1146736461-10-zvezd-kotorye-porazyat-vashe-voobrazhenie.html, Алекс А.Алмистов - Т Р А Н С С Ф Е Р Ы - "Бермудский" Треугольник Вселенной

Что такое гипотетические астрономические объекты? Звёзды Есть такой тип учёных, которые занимаются разработкой максимально экзотических теорий. Они действуют в стиле: «давайте придумаем что-то эдакое, чтобы это было и удивительно, и непротиворечиво по отношению к имеющимся фактам». Особенно бурной фантазией обладают астрофизики: железные звёзды, кварковые звёзды, преонные звёзды… И это далеко не полный список необычайных звёзд!
Космическая эра началась недавно — всего каких-то 60 лет назад, когда были запущены первые орбитальные аппараты и первые космонавты. Сегодня глубины Вселенной «просматриваются» мощнейшими телескопами, а в окрестностях планет Солнечной Системы выполняют свою миссию разные автоматические станции. Но даже соседка Луна пока ещё не раскрыла всех своих тайн, чего уж говорить о более дальних масштабах! В общем, астрофизики решили идти по принципу древних мифотворцев, которые, не зная, что за существа обитают на «краю земли», включали воображение и описывали их в виде огнедышащих драконов и прочих фантастических чудовищ. Надо сказать, в науке смелые гипотезы не только не возбраняются, а ещё и приветствуются. Достаточно вспомнить планету Нептун, которую сначала вычислили на бумаге, а уж затем обнаружили на небе.

Теперь пожелаем успехов нашим учёным в творчестве такого рода и расскажем о самых необычных гипотетических звёздах.

Кварковая звезда.

 Сверхновая после взрыва превращается либо в плотную нейтронную звезду, либо в чёрную дыру. Однако не всё так просто, как может показаться на первый взгляд. Согласно расчётам, имеется и третий вариант — «кварковая звезда», которая полностью состоит из кварк-глюонной плазмы. Это астрономическое тело намного плотнее нейтронной звезды, но недостаточно плотное для «схлопывания» в чёрную дыру. Другими словами, оно занимает промежуточное положение. По мнению астрономов, кварковые звёзды образуются под воздействием колоссального давления, когда нейтроны распадаются на входящие в их состав кварки. Поиски таких объектов могут помочь в познании процессов, которые проходили на ранних этапах развития Вселенной, ведь тогда она была заполнена кварковой материей, только разогретой до триллионов градусов. 

Преонная звезда. 

Есть гипотеза, которая гласит, что кварки и лептоны не являются фундаментальными частицами, а состоят из преонов — частиц глубочайшего уровня. Если это так, то по аналогии с кварковыми звёздами могут существовать и преонные звёзды с более чудовищной плотностью (1020 г/куб.см). Грубо говоря, такая звёздочка при радиусе в 175 метров будет иметь массу двух Солнц. Поскольку в теории преонная звезда не испускает излучения, её удастся обнаружить только посредством эффекта гравитационной линзы. 

Бозонная звезда.

 Этот объект целиком и полностью состоит из бозонов (обычные звёзды состоят в основном из фермионов). Главное условие для жизни подобной диковинки — бозоны должны обладать хотя бы небольшой массой и при этом быть стабильными. Но на сегодняшний день известно только об одном стабильном представителе данного типа частиц — фотоне. Увы, он безмассовый и к тому же всегда «летает» со скоростью света. Бозонные звёзды, по крайней мере, гипотетически могут находиться в центрах галактик. Также они рассматриваются в качестве компонента, составляющего тёмную материю.

Во вселенной существуют два типа частиц: бозоны и фермионы. Самым простым отличием между ними является то, что фермионы являются частицами с полуцелым значением спина, в то время как бозонные частицы обладают целым значением спина. Все элементарные и составные частицы, такие как электроны, нейтроны и кварки являются фермионами, в то время как к бозонам относятся фотоны и глюоны. В отличие от фермионов, два или более бозона может находиться в одном месте.

Чтоб облегчить понимание: фермионы это здания, а бозоны это призраки. В одном месте может находиться одно здание, так как невозможно построить два здания на одном и том же месте, но тысячи призраков могут находиться в одном месте или здании, так как они нематериальны (у бозонов на самом деле есть масса, это всего-лишь пример). Количество бозонов в одном месте неограниченно. Все известные звёзды состоят из фермионов, но если существуют стабильные бозоны, обладающие некоторой массой, то гипотетически могут существовать и бозонные звёзды.

Учитывая, что гравитация зависит от массы, представьте, что может случиться, если существует такой тип частицы, что в одной точке пространства может сосуществовать бесконечное количество частиц такого типа. Вернувшись к нашему примеру – представьте, что каждый призрак обладает какой-то, даже небольшой массой, а теперь поместите миллиарды призраков в одну точку – получится точка, обладающая огромной массой, которая будет притягивать другие объекты своей огромной гравитационной силой. Таким образом, бозонные звёзды могут обладать бесконечной массой, сконцентрированной в бесконечной малой точке пространства. Согласно теориям, бозонные звёзды, если они существуют, расположены в центрах галактик.


 Железная звезда. 

Термоядерные реакции, при которых лёгкие атомные ядра преобразуются в более тяжёлые, являются основным источником звёздной энергии. Они протекают следующим образом: водород превращается в гелий, гелий — в углерод, углерод — в кислород, кислород — в кремний, и, наконец, кремний — в железо. Синтез железа требует больше энергии, чем выделяется, поэтому железо — последняя стадия. Добрая половина звёзд умирает еще до «возгорания» углерода, остальные же, достигнув этой или следующей ступени, взрываются в виде сверхновой. Но может ли существовать звезда, полностью состоящая из железа и при этом вырабатывающая энергию? Да, в теории может — за счёт холодного нуклеосинтеза, идущего путём эффекта квантового туннелирования. Это когда частица преодолевает барьер, который в обычной жизни преодолеть бы не смогла. Например, если вы бросите резиновый мячик в бетонную стену, он отскочит, ударившись об неё. Но в квантовой механике есть маленький шанс, что мячик пройдёт сквозь стену и стукнет по макушке человека, которому не повезло оказаться позади стены. Железная звезда должна быть невероятно массивной, чтобы в ней постоянно шли термоядерные реакции. Поскольку железо — довольно редкий по космическим меркам элемент, считается, что первая железная звезда появится через 10^1500 лет, что значительно больше нынешнего возраста Вселенной. 


Квази-звезда. 


«Мерцай, мерцай, квази-звезда!
Далека ты, иль близка?
Так отлична от других,
Светом ослепляешь их.
Мерцай, мерцай, квази-звезда!
В мыслях, я с тобой всегда»

Георгий Антонович Гамов, «Квазар», 1964 год.

Такие гипотетические объекты могли существовать исключительно в ранней истории Вселенной. Эти древние звёзды черпают энергию вовсе не из термоядерных реакций, как их современные «сородичи», а светятся благодаря излучению, которое генерируется в результате засасывания материи в черную дыру.
По сути, квази-звезда — это огромная протозвезда (находящаяся на заключительном этапе своего формирования) с небольшой чёрной дырой в центре. Оболочка такой звезды настолько массивная, что при взрыве она не рассеивается в окружающем космосе, как это происходит с обычными сверхновыми. Для того чтобы лучше понять принцип излучения квази-звезды, в качестве наглядного примера возьмём петарду, окружённую тончайшей бумагой. Если петарда взорвётся, бумага улетит в сторону, и чёрная дыра, возникшая в результате взрыва, не сможет её поглотить. Но если окружить петарду слоем кирпича, взрыв не разрушит столь прочный материал, и впоследствии он будет «съеден» чёрной дырой. Такая «подкормка» сопровождается огромным выделением лучистой энергии. Каждый раз, когда мы восторженно глядим на миллиарды сверкающих звёзд, невольно задаёмся вопросом: «Какие же тайны скрывает Космос?» Вполне естественно, что большинство увлекательных объектов находится за пределами возможностей наших технологий. И пока их не удаётся обнаружить напрямую, учёные будут строить гипотезы.

Ещё 7 типов Звёзд, которые поразят ваше воображение


1. Гипергигант
Довольно скучный тип звёзд, по сравнению с остальными звёздами в этом списке, он был включён сюда только из-за его размера. Для нас трудно представить, насколько на самом деле огромны эти монстры, но радиус самой большой звезды, известной науке на сегодняшний день (NML Cygni) в 1 650 раз больше радиуса нашего солнца, и составляет 7,67 астрономических единиц (1 147 415 668,296 километров). Для сравнения, орбита Юпитера находится на расстоянии 5,23 астрономических единиц от нашего солнца, а орбита Сатурна на 9,53 астрономических единиц. Из-за своих огромных размеров, большинство гипергигантов живут в лучшем случае, меньше, чем пару дюжин миллионов лет, перед тем как превратиться в сверхновые. Гипергигант Бетельгейзе (Betelgeuse), который находится в созвездии Ориона, должен превратиться в суперновую в течение следующих нескольких сотен тысяч лет. И когда он это сделает, он будет светить ярче, чем луна, больше года, а также будет виден в течение дня.

2. Гиперскоростная звезда
В отличие от всех других звёзд в этом списке, гиперскоростные звёзды в целом являются обычными звёздами, не обладающими какими-либо отличительными или интересными качествами, кроме того, что они мчатся сквозь пространство на безумных скоростях. Гиперскоростные звёзды, скорость которых достигает более 1.5-3 миллионов километров в час, появляются в результате того, что звёзды приближаются слишком близко к центру галактики – который отбрасывает звёзды на сверхвысоких скоростях. Все известные гиперскоростные звёзды в нашей галактике двигаются со скоростью, превышающей космическую более чем в два раза. Следовательно, в конечном итоге они полностью вылетят из галактики и будут дрейфовать в темноте на протяжении всей своей жизни.

3. Цефеиды 
К Цефеидам или же к пульсирующим переменным звёздам, относятся звёзды, масса которых превышает массу нашего солнца в 5-20 раз. Эти звёзды регулярно увеличиваются и уменьшаются в размере, что создаёт впечатление пульсации. Цефеиды расширяются из-за неимоверно сильного давления внутри их плотных ядер, но как только они расширяются, давление спадает, и они опять съёживаются. Этот цикл расширений и съёживаний продолжается на протяжении всей их жизни, пока звезда не перестаёт существовать.

4. Чёрный карлик
Если звезда слишком мала для того, чтобы стать нейтронной или просто взорваться в суперновую, она, в конце концов, превращается в белого карлика – неимоверно плотную и тусклую звезду, которая израсходовала всё своё топливо и в ядре которой больше не идёт деление атомного ядра при цепной реакции. Зачастую, белые карлики, размер которых не превышает размер Земли, медленно остывают путём электромагнитного излучения. После очень долгого времени, белые карлики, наконец, совсем перестают излучать свет и тепло – становясь, таким образом, той звездой, которую учёные и называют чёрным карликом, и которая практически незаметна для наблюдателя. Переход в состояние чёрного карлика означает конец звёздной эволюции для многих звёзд. Считается, что на данный момент во вселенной не существует чёрных карликов, потому что для того, чтобы они образовались, требуется слишком много времени. Наше солнце дегенерирует в чёрного карлика приблизительно через 14,5 миллиардов лет.

5. Оболочечные звёзды
Когда люди думают о звёздах, они представляют себе огромные обжигающие сферы, плавающие в пространстве. На самом деле, из-за центробежной силы, большинство звёзд немного сплюснутые или плоские у полюсов. Для большинства звёзд это сплющивание достаточно незначительное, чтобы не обращать на него никакого внимания, но в звёздах некоторых пропорций, которые вращаются на дикой скорости, это сплющивание настолько сильное, что придаёт им форму мяча для регби. Из-за своих высоких вращательных скоростей, эти звёзды также отбрасывают огромные количества материи вокруг своих экваторов, создавая вокруг себя «оболочку» газа – формируя, таким образом, оболочечную звезду. На изображении выше, та белая, немного прозрачная масса, которая окружает приплюснутую звезду Ахернар (Альфа Эридана) и является «оболочкой».

6. Нейтронная звезда 
Как только звезда становится суперновой, от неё обычно остаётся только нейтронная звезда. Нейтронные звёзды очень маленькие и очень плотные шары, состоящие из (как вы уже догадались) нейтронов. Во много раз плотнее, чем ядро атома, и размером меньше дюжины километров в диаметре, нейтронные звёзды действительно представляют собой замечательный продукт физики.
Из-за чрезвычайной плотности нейтронных звёзд, любой атом, который вступает в контакт с их поверхностью, практически моментально разрывается на части. Все не нейтронные субатомные частицы сначала распадаются на свои постоянные кварки, а затем «переформировываются» в нейтроны. В результате этого процесса высвобождается огромное количество энергии, которой настолько много, что в результате столкновения нейтронной звезды с астероидом среднего размера, произошёл бы взрыв гамма-излучения с высвобождением гораздо большего количества энергии, чем наше солнце смогло бы выработать за всё время своего существования. Уже только по одной этой причине, любая нейтронная звезда, находящаяся недалеко от нашей солнечной системы (на расстоянии нескольких сотен световых лет) представляет собой вполне реальную угрозу уничтожения Земли выбросом смертельной радиации.

7. Звезда тёмной энергии
Из-за многих проблем связанных с нашим текущим пониманием чёрных дыр, особенно в отношении квантовой механики, много альтернативных теорий было выдвинуто для объяснения наших наблюдений.

Одной из этих теорий является теория о звезде тёмной материи. Существует теория, что когда огромная звезда разрушается, она превращается не в чёрную дыру, а в пространственно-временную, мутирующую тёмную материю. Из-за квантовой механики, эта звезда должна обладать довольно уникальным свойством: за пределами своего горизонта событий она должна притягивать всю материю, в то время как внутри, вне своего горизонта событий, она будет отторгать всю материю. В теории это происходит потому, что тёмная материя обладает «негативной» силой тяготения, которая отталкивает всё, что приближается к ней, точно так же, как одинаковые полюса магнита отталкиваются друг от друга.

Кроме того, в соответствии с этой теорией, как только электрон проходит через горизонт событий звезды тёмной энергии, он превращается в позитрон, также известный как антиэлектрон, и отбрасывается. Когда эта античастица сталкивается с нормальным электроном, они взаимно уничтожаются, образуя при этом небольшой выброс энергии. Считается, что этот процесс, в крупном масштабе, способен объяснить огромное количество радиации, которая выбрасывается из центра галактик – именно оттуда, где по альтернативным теориям и располагаются чёрные дыры.

По большей части – легче всего представлять звезду тёмной энергии в виде чёрной дыры, которая отбрасывает материю и не обладает сингулярностью.

Источник: https://bugaga.ru/interesting/1146736461-10-zvezd-kotorye-porazyat-vashe-voobrazhenie.html#ixzz5vduXRA1K



АВТОРСКОЕ (Т Р А Н С С Ф Е Р Ы - "Бермудский" Треугольник Вселенной)

Транссферы[1] - малоизученные области Вселенной, характеризующиеся высокой степенью инвариантности пространственно временного континуума и полным отсутствием гравитационных, электромагнитных, ядерных и биофизических свойств.

Понятие «Транссфер» было впервые введено в современную Пи-Си-Пи - науку в 2156 году группой ученых из Русской Академии наук во главе с доктором Дмитрием Николаевичем Вильяминовым (2130 - 2183) в качестве базового постулата разработанной им же самим гипотезы «субпространственных червоточин Галактики».

Вплоть до 2165 года данная гипотеза ввиду своей вызывающей экстравагантности так и не была воспринята всерьез подавляющим большинством ученых Земного Сообщества 

По этой же причине в 2162 году ее авторы были официально исключены из членов Академии Наук Лиги Наций за антинаучный подход к решению глобальных проблем, стоящих перед Земной наукой. А также, за публичный отказ ее авторов от того, чтобы признать свою точку зрения ошибочной и лишенной здравого смысла 

Однако, в начале 2165 года отношение к гипотезе «субпространственных червоточин Галактики» со стороны мировой научной общественности неожиданно и принципиально изменилось. Причиной этому стало открытие 12 -той звездной экспедицией, возглавляемой командором Ля Си Кунном, первого субпространственного туннеля, соединяющего Солнечную систему со Звездной системой Сириуса. Учитывая личную просьбу командора Ля Си Кунна и принятое Советом Лиги Наций на ее базе решение, данный субпространственного туннель получил название «Транссфер Вильяминова».

Начиная с 2167 года - усилиями 5-ти звездных экспедиций Американской Конфедерации и 7-ми звездных экспедиций Европейского Союза и Восточно-Славянского Сообщества - в разных точках Солнечной системы были обнаружены еще (помимо «Транссфер Вильяминова») 12 субпространственных туннелей, многие из которых активно эксплуатируются в настоящий момент Транспортной Службой Лиги Наций в качестве межзвездных грузовых и пассажирских трасс.

Большая Энциклопедия Лиги Наций «NETINFORM[2] - 2200 год» 

Раздел « Основные направления развития Пи-Си-Пи науки»

Подраздел « Классическая физика» 

[1]Транссферы – с точки зрения физического смысла: «СубпросТРАНСтвенные (ТРАНСпортные) туннели-переходы между СФЕРами Галактик или даже Вселенных». По-английски термин звучит как - «TranSSphere» и его можно дословно перевести как: «по ту сторону сфер» (где, «trans» - приставка – «через-, за-, транс-, по ту сторону», а «Sphere» - «шар, сфера, глобус» и т.д.).

[2] NETINFORM - электронный вариант Большой Энциклопедии Лиги Наций, доступный только лишь осободоверенным чиновникам Правительства и Спецслужб.

+10
1 764

0 комментариев, по

2 129 124 857
Наверх Вниз