Статьи и небольшие очерки на научно-философские темы. Современные теоретическая физика и математика забрались в своих моделях вселенной и теориях настолько высоко (и, одновременно, глубоко!), что уже прямо сейчас они на века опережают самые смелые фантазии современных писателей-фантастов: очень непросто подобрать материал и какие-то аналогии для перевода их идей на человеческий язык. И это - несмотря на то, что существует океан научно-популярной литературы. Он не покрывает и тысячной части всех современных достижений науки - только островки мэйнстрима, который уже завтра, вероятно, уйдет в тень. Как и в жизни, в науке, в конечном счете, выживает только настоящее...
Цикл «НаучФилПоп »
"Я знаю, что ничего не знаю!" - известное философское кредо Сократа. Сегодня оно выглядит как интеллектуальная слабость, которую не простят даже школьнику, но у Сократа оно было силой и методом. Как такое возможно?
Либо А, либо... одно из двух!
Единственный надежный способ избежать парадокса лжеца - говорить правду!
Мыслю, следовательно, существую. А что могло бы послужить доказательством несуществования?
Несколько уровней известного парадокса: Ахиллес, конечно, догоняет Черепаху, хотя это невозможно...
Вы когда-нибудь задумывались, почему математика, созданная человеческим разумом, так идеально описывает Вселенную? С другой стороны, почему квантовая физика так странна и противоречит "здравому смыслу"? Ответы на эти вопросы, как ни странно, начал искать еще в XVIII веке философ Иммануил Кант...
Представьте, что вы попали на кухню великого шеф-повара — Вселенной. Он готовит грандиозное блюдо — Реальность. Вам запрещено смотреть в его поваренную книгу, но разрешено пробовать готовое блюдо (опыт) и анализировать обрывки списков на столе (данные наблюдений). Ваша задача — угадать рецепт!
Максимум знаний при минимуме усилий - насколько далеко можно продвинуться в науке, опираясь на этот принцип, который иногда называют бритвой Оккама?
Как говорим, так и видим!
Бритва Оккама - полезный методологический принцип науки ("Не следует множить сущее без необходимости"). Но чтобы он нормально работал, бритва не должна быть слишком острой...
Прогресс - это когда нельзя не играть...
Когда слово - это дело!
Как отличить науку от не науки? Принципы, вынесенные в заголовок, - обычные инструменты для этой задачи. Но есть нюансы...
Тот случай, когда лучше никак, чем плохо!
Иногда любопытно же взглянуть на известные вещи с новых точек зрения!
Попытка примирить скептиков и реалистов...
"Он пытался вытащить теорию познания за волосы из ее собственного болота, но... она оказалась лысой!"
Гадамер просто бросил камешек...
О Пармениде и его Сферосе
Познать - значит вспомнить!
Мы мыслим не "атомами", а "молекулами"...
Очевидное не всегда реально, реальное - не всегда очевидно!
А что если вся Вселенная состоит из одной единственной частицы?
Когда-нибудь демон Максвелла перехитрит демона Декарта...
Граница смысла - она же и граница бессмысленного?
А все началось с разговора с 10-классником...
Самосовершенствование - цель, средство или... оксюморон?
А у тебя есть айфон?
Когда-то этот труд должны были изучать студенты любого вуза...
Можно ли описать философскую категорию свободы на математическом языке? Парадокс в том, что любая математическая структура уже изначально содержит в себе детерминизм - логический, а математики, свободной от логики, не существует. Таким образом, вопрос сводится к следующему: можно ли описать на детерминированном языке концепцию принципиальной недетерминированности?